在现代铝合金客车车身生产中,铆接、螺栓连接和焊接是主要的3种连接方式。
铝合金结构车身焊接时,不仅易导致骨架变形,而且易产生气孔、咬边、裂纹、未熔合等诸多缺陷,工艺技术难度大,对操作人员的专业技能要求偏高。
根据有关资料介绍,矫正铝合金焊接变形的工时约占制造车体全部工时的20%左右。螺栓连接车身精度较差,生产效率低,扭矩检测困难,且车身结构在振动或交变荷载作用下,螺纹容易变形,使螺栓连接松动。
铆接车身无应力变形,无需矫正工序,无需检测扭矩工序,工艺技术简单,对操作人员的专业技能要求低,同时其制造车间节省能源、减少污染、绿色环保。
目前,国内众多客车厂也相继开发出全铝合金铆接车身,如申龙SLK6109、海格KLQ6762、申沃SWB6108、金港ZJG6140 等。
铆接技术虽然优势明显,但受其结构设计、力学性能、作业空间等方面的制约,其在铝合金车身上的应用还不能完全取代焊接。
01 Huck 铆钉的特点和分类
Huck 铆钉包括钉杆和钉套 2 个部件,钉杆又包括钉头、锁紧槽、断颈槽、尾段( 枪爪槽) 4 个部位,如图1所示。
图1 Huck 铆钉的结构
与传统螺栓利用扭力旋转产生紧固力不同,采用特有的环槽锁紧、环槽断裂技术,在外界拉力下,拉伸钉杆挤压钉套产生塑性变形,靠变形部位夹紧基材实现可靠的紧密连接,如图2所示。
此结构具有高夹紧力和高抗剪力性能,从根本上解决了普通紧固件在振动情况下松动的问题。同时具有更高的精度、更高的生产效率、优异的抗振及抗疲劳性。
在国内外许多需要螺栓连接或焊接的建筑、汽车、铁路、船舶、航天结构上都使用了大量的 Huck 铆钉,以降低螺栓连接或焊接的应用比重。
图 2 拉力与位移曲线
目前应用在铝合金客车车身上的 Huck 铆钉按放钉方式分为双面盲拉铆钉和单面盲拉铆钉两大类。双面盲拉铆钉先从基材背面放入铆钉,再从基材正面拉铆;
单面盲拉铆钉既从基材正面放入铆钉,也从基材正面拉铆。按结构形式,Huck 铆钉可分为环槽铆钉、拉丝抽芯铆钉和哈克博姆铆钉 3 种类型,在国外又被分别称做 HuckBolt、Magna-Lok 和 Huck BOM。
环槽铆钉( HuckBolt) ,又称哈克钉,由一个钉套和一个钉杆两个独立的部件组成,属于双面盲拉铆钉。
环槽铆钉利用胡克定律原理,经由拉铆钉专用设备,在单向拉力的作用下,拉伸钉杆并推挤钉套,结构件被压紧后,将内部光滑的钉套挤压到钉杆凹槽使钉套和钉杆形成 100%的过盈配合,达到设计夹紧力后,钉杆断颈槽拉断完成铆接,如图 3 所示。
环槽铆钉抗剪力高、抗拉力高,铆接范围大( 铆接厚度 3. 5 ~ 30 mm) ,但在作业空间狭窄的结构中,操作不如单面盲拉铆钉方便。
图3 环槽铆钉铆接原理
拉丝抽芯铆钉( Magna-Lok) 属于单面盲拉铆钉, 与环槽铆钉结构不同,在单向拉力的作用下,钉杆拉伸向上,使钉杆尾端较粗部分进入钉套中。
将钉套逐渐挤压增粗并填满钉孔,结构件被压紧后钉杆上的环形凹槽推入钉套的环形凸台内锁止,达到设计夹紧力后,钉杆断颈槽拉断完成铆接,如图 4 所示。
拉丝抽芯铆钉成本低,操作方便,但力学性能较差,其抗剪力和抗拉力分别为环槽铆钉的 0. 8 倍和 0. 7 倍,铆接厚度范围小( 铆接厚度为 1. 5 ~ 16 mm) 。
图4 拉丝抽芯铆钉铆接原理
哈克博姆铆钉( Huck BOM) 同属于单面盲拉铆钉,不但具有环槽铆钉永不松动的结构特点,同时具有拉丝抽芯铆钉单面放钉的优势。
在单向拉力的作用下,拉伸钉杆并推挤钉套,使钉套尾端变形形成墩头,结构件被压紧后,将内部光滑的钉套挤压到钉杆凹槽 使钉套和钉杆形成 100%的过盈配合,达到设计夹紧 力后,钉杆断颈槽拉断完成铆接,如图 5 所示。
哈克博姆铆钉力学性能较高,抗剪力和抗拉力分别为环槽铆钉的 1. 6 倍和 1. 3 倍,可在作业空间狭窄的结构中取代环槽铆钉的应用,但采购成本过高,是环槽铆钉的 3 倍。
图5 哈克博姆铆钉铆接原理
02 Huck铆钉在铝车身上的应用
铝合金型材具有较高的比强度,虽然弹性模量低,但有很好的挤压性,能得到复杂截面的构件,从结构上能够补偿铝合金车身单个零部件的刚度;
同时 Huck 铆钉的高夹紧力、高抗剪切力、永不松动的特点,钉杆在铆接过程中,随着拉力增大,断颈槽部位最先超过材料的屈服极限而断裂,其他部位并不产生塑性变形。
这种结构的钉杆允许用高强度的材料制造,从而可提高铝合金车身各个零部件之间的连接强度。Huck 铆钉结合 6061-T6 态铝合金型材的客车车身结构,在国外已广泛应用。
某客车公司设计的 14 m 机场摆渡车在原有成熟的钢车身上的基础上,改进为采用 80%占比的铝合金铆接结构,20%占比的氩弧焊接结构,如图 6 所示。
图6 某客车六大片骨架结构
铝合金车身的前、后围骨架因弧形结构,接头互不垂直,连接件设计困难,无法应用铆接,采用氩弧焊焊接而成;车身的顶盖骨架、侧围骨架全部采用 Huck 铆钉铆接而成;
底盘骨架不做改动,仍采用 Q345B 普通矩形钢管焊接而成; 车身五大片合装、车身与底盘合装通过 Huck 铆钉铆接。
同时结合 UG 有限元分析,对合装区域的铆钉逐个建立接触分析,充分模拟铆接车身的水平弯曲、紧急制动、紧急转弯、极限扭转等工况,对铆钉的强度进行逐个校核,保证铝合金车身骨架的铆接强度和刚度达到使用要求。
设计优化后,铝合金车身骨架共有环槽铆钉1232 颗、拉丝抽芯铆钉1748 颗、哈克博姆铆钉 96 颗,实际制造车体时一颗 Huck 铆钉铆接时间为 3 ~8 s,从铝型材下料到六大片骨架合装的总工时为 80 h,相对于钢车身焊接骨架总工时 230 h( 含 16 h 矫正焊接变形工时) ,生产效率提高近 3 倍。
钢车身重 2 t ( 不含底盘骨架) ,整备质量 12. 5 t,铝合金铆接车身骨架重 920 kg,整备质量 11 t,骨架减重 54%,整车减重 12%,轻量化效果显著。
样车已于2014 年通过了载荷试验、转向性能试验、结构静应力试验、结构动应力试验、抗风稳定性试验、5000 km 可靠性测试等,结果显示铝合金铆接车身结构稳固、车身性能安全。该产品目前已在上海浦东机场安全运行 4 年。
03 结束语
目前,在铝合金焊接技术不成熟、焊接变形量大、工艺装备成本投入过高的背景下,铆接技术操作简单、高效,不用消除内应力,且 Huck 铆钉作为一种高夹紧力、高抗剪切力、永不松动的连接结构,可部分取代焊接,必然在我国客车制造行业得到广泛应用。
今天的话题,就分享到这里,不当之处,欢迎批评指正;若您有任何疑问或建议,或需要进群交流的小伙伴,可关注螺丝君微信公众号:GAF螺丝君(GAF-luosijun)